If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2=99
We move all terms to the left:
q^2-(99)=0
a = 1; b = 0; c = -99;
Δ = b2-4ac
Δ = 02-4·1·(-99)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*1}=\frac{0-6\sqrt{11}}{2} =-\frac{6\sqrt{11}}{2} =-3\sqrt{11} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*1}=\frac{0+6\sqrt{11}}{2} =\frac{6\sqrt{11}}{2} =3\sqrt{11} $
| 1/7y-6=-8 | | 4x-5=-2x-6 | | (3x+4)+43=180 | | 10^x=3.91 | | 5x-8+9=7x+18 | | 4x-5=2x-6 | | 9-12a=33 | | 12x-20=-8 | | 1/6y+3=-13 | | 44x+30-30=60-25x-6 | | t^2=-16 | | -5/6a=8/8 | | -(3/6k+5)=5/6k-3 | | 3x^2+10x+82=0 | | 2/7=8/n | | 7-8(1-4h)=21 | | (9/x)+6=(2/3x) | | 180-9x=20x+5 | | -2/7-3/7=x | | 6+4.28s=T | | 7(5x+3)=21-8x | | 3x=289.43 | | 3x+66/5=3 | | 3.2x+49.9=22.1-10.7x | | 9/30=x/50 | | 180-9x=(20x+5 | | 6x-18/2=2 | | 1.2x+0.8=12 | | 4s+4.45=T | | n/4=8/16 | | 6x-5=5x+16 | | 4x-7=-3x+1 |